Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders.

نویسندگان

  • Alessandro Fraldi
  • Fabio Annunziata
  • Alessia Lombardi
  • Hermann-Josef Kaiser
  • Diego Luis Medina
  • Carmine Spampanato
  • Anthony Olind Fedele
  • Roman Polishchuk
  • Nicolina Cristina Sorrentino
  • Kai Simons
  • Andrea Ballabio
چکیده

The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol-enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNAREd into autophagy

Autophagy is a conserved, intracellular bulk degradation process that mediates the turnover of organelles and longlived proteins. During autophagy, cytoplasmic components and organelles are sequestered in a double-membrane vesicle (the autophagosome) that fuses with the lysosome, thereby delivering its contents for lysosomal degradation. Deregulated autophagy is implicated in cancer and in some...

متن کامل

Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents neurodegeneration in lysosomal storage diseases

Lysosomal storage disorders (LSDs) are inherited diseases characterized by lysosomal dysfunction and often showing a neurodegenerative course. There is no cure to treat the central nervous system in LSDs. Moreover, the mechanisms driving neuronal degeneration in these pathological conditions remain largely unknown. By studying mouse models of LSDs, we found that neurodegeneration develops progr...

متن کامل

δ-Tocopherol reduces lipid accumulation in Niemann-Pick type C1 and Wolman cholesterol storage disorders.

Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are s...

متن کامل

Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease.

Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired becau...

متن کامل

Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease

Lysosomal storage disorders (LSD) are characterized by the accumulation of diverse lipid species in lysosomes. Niemann-Pick type A/B (NPA/B) and type C diseases Niemann-Pick type C (NPC) are progressive LSD caused by loss of function of distinct lysosomal-residing proteins, acid sphingomyelinase and NPC1, respectively. While the primary cause of these diseases differs, both share common biochem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 29 21  شماره 

صفحات  -

تاریخ انتشار 2010